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Deep Learning for Brain MRI Confirms Patterned
Pathological Progression in Alzheimer’s Disease

Dan Pan, An Zeng,* Baoyao Yang,* Gangyong Lai, Bing Hu, Xiaowei Song, Tianzi Jiang,
and Alzheimer’s Disease Neuroimaging Initiative (ADNI)

Deep learning (DL) on brain magnetic resonance imaging (MRI) data has
shown excellent performance in differentiating individuals with Alzheimer’s
disease (AD). However, the value of DL in detecting progressive structural
MRI (sMRI) abnormalities linked to AD pathology has yet to be established. In
this study, an interpretable DL algorithm named the Ensemble of
3-dimensional convolutional neural network (Ensemble 3DCNN) with
enhanced parsing techniques is proposed to investigate the longitudinal
trajectories of whole-brain sMRI changes denoting AD onset and progression.
A set of 2369 T1-weighted images from the multi-centre Alzheimer’s Disease
Neuroimaging Initiative and Open Access Series of Imaging Studies cohorts
are applied to model derivation, validation, testing, and pattern analysis. An
Ensemble-3DCNN-based P-score is generated, based on which multiple brain
regions, including amygdala, insular, parahippocampal, and temporal gyrus,
exhibit early and connected progressive neurodegeneration. Complex
individual variability in the sMRI is also observed. This study combining
non-invasive sMRI and interpretable DL in detecting patterned sMRI changes
confirmed AD pathological progression, shedding new light on predicting AD
progression using whole-brain sMRI.

1. Introduction

Neurodegeneration in sporadic Alzheimer’s disease (AD)[1] is
characterized by progressive brain atrophy and other structural
changes. As a remarkable contribution to the neuropathology of
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AD, Braak and Braak[2] have defined the
progressive development of brain atrophy
in AD, which has been used as the gold
standard for AD staging. Based on Braak
1991,[2] brain atrophy begins in basal por-
tions of the isocortex (Stages I–II). Isocor-
tical association area and hippocampal for-
mation are then gradually involved (Stages
III–IV). In the late phase (Stages V–VI),
amyloid and neurofibrillary tangles (NFTs)
spread throughout the whole brain, and
the whole-brain atrophy is developed fur-
ther. Current advancements[3–6] have linked
these neuropathological changes to the clin-
ical expression of AD to assist AD stag-
ing and diagnosis on the clinical side.
Multiple biomarkers, such as amyloid and
tau,[7] cerebro spinal fluid (CSF),[8] and
plasma,[3,6,9] have been explored to allow the
detection of AD. The examination of these
biomarkers has implications for promoting
early intervention and prevention of AD.
Among these examination methods,[3–13]

the neuroimaging methods based on in
vivo structural magnetic resonance imaging

(sMRI) is promising because it can be completely non-invasive
and clinically easily available, and thus repetitively used in mon-
itoring disease progression in the brain.

Deep learning (DL) has been utilized to analyze brain mag-
netic resonance imaging (MRI) images in the past decade.[14]
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Current research has shown the expert-level performance of
DL models[14–17] in differentiating MRI images of AD subjects
from those of the healthy controls (HC). In particular, the deep-
learning models[17,18] benefit from the strong capabilities in rep-
resentation learning to effectively explore the nonlinearities in
neuroimaging data. Nevertheless, most of the current DL mod-
els are developed to assist AD diagnosis. Aiming to further im-
prove AD classification, researchers are mainly designing DL
models, which are increasingly prone to complexity. Meanwhile,
the difficulty in interpreting DL models becomes more remark-
able with the increase in model complexity. DL models are es-
sentially hard to explain and understand. Yet, analyzing the pro-
gression pattern of AD requires not only the models with good
generalization capabilities but the interpretation techniques of
models. Consequently, how to better balance the two conflict-
ing requirements directly results in the fact that analyzing the
progression pattern of neurodegeneration for neuroimaging re-
mains challenging.[19] The situation might be a reason why little
attention has been paid to analyzing patterned pathological pro-
gression in AD based on DL models rather than targeting diag-
nostic classification tasks.[20–23] Some studies have started to ex-
tract atrophy features[24] or patterns[25] from sMRI to derive the
brain age. In line with this effort, our recent study[26] has devel-
oped a DL model (2-dimensional convolutional neural network)
to identify the critical discriminative brain regions for AD recog-
nition. Multiple brain regions, such as the rostral hippocampus,
medial and lateral amygdala, and parahippocampal gyrus, are ac-
quired and verified as areas significantly atrophied in AD. Al-
though our DL method using an independent training strategy
and a voting-ensemble technique[26] might support the associ-
ations between neuroimaging phenotype and AD neurodegen-
erative progression, the longitudinal trajectory of sMRI changes
during AD progression, for example, the spatial and temporal as-
sociations among neurodegenerative brain regions, were not ex-
amined in the previous study.[26]

In this literature, we are motivated to tackle the gap men-
tioned above by applying an interpretable DL technique named
the ensemble of 3-dimensional convolutional neural network
(Ensemble 3DCNN), which uses multiple 3D convolutional net-
works and a meta-classifier to assess the degree of neurodegen-
eration in the brain of AD subjects. Ensemble 3DCNN is de-
tailed in the Experimental Section. We derive a new neuroimag-
ing biomarker named P-score from the AD predictive scores of
sMRI images, that is, the output of the trained Ensemble 3DCNN
with sMRI images as the input. Details about the derivation of P-
score are reported in the Experimental Section. This neuroimag-
ing biomarker enables the subtle detection of critical neurode-
generative changes in the AD brain using longitudinal (multiple-
time-point) sMRI sequences acquired from the Alzheimer’s Dis-
ease Neuroimaging Initialtie (ADNI, https://adni.loni.usc.edu)
database[27] and the Open Access Series of Imaging Studies (OA-
SIS, https://www.oasis-brains.org) database.[28]

Our objectives are to address the following questions: 1) Can
interpretable DL algorithms help verify the patterned neurode-
generative changes in AD progression from the perspective of
neuroimaging? 2) Can DL findings verify the progress of AD as
identified in Braak 1991?[2] 3) Can DL provide additional help-
ful information and/or critical details that the long-established
neuropathologic classics do not mention or disclose at a fine-

grained level for understanding AD? Insights toward these ques-
tions are of explicit significance. The success in verifying disease
progression using DL and non-invasive and repetitive MRI facil-
itates stimulating in vivo individualized staging of patients with
AD. From the clinical perspective, the DL-extracted neuroimag-
ing biomarker provides means to track and predict the involve-
ment sequence of neurodegenerative brain regions of patients
with AD and their individual imminent clinical manifestations,
which facilitates disease surveillance and prevention.

This work utilizes the large well-established cohorts from both
the ADNI[27] https://adni.loni and the OASIS.[28] They have ad-
vantages in terms of relatively large sample size and high gener-
alization with data from multicenter trials. Using sMRI images,
the analysis of neurodegeneration patterns in AD is conducted
on the basis of the Brainnetome Atlas,[29] in which the human
brain is parceled into 246 fine-grained regions according to the
anatomical and functional connections.

2. Results

2.1. Participants and Datasets

Data used in this study are obtained from the ADNI database
and the OASIS database. The ADNI was launched in 2003 as a
public-private partnership, led by principal investigator, Michael
W. Weiner, MD. The primary goal of ADNI has been to test
whether serial MRI, positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cog-
nitive impairment (MCI) and early AD. The OASIS is a project
aimed at making neuroimaging data sets of the brain freely avail-
able to the scientific community to facilitate discoveries in basic
and clinical neuroscience.

As summarized in Figure 1, the main work of this study is
divided into two parts, that is, deep-learning model (Ensemble
3DCNN) development and neurodegenerative pattern analysis.
In the first part, we accomplish three phases: the model deriva-
tion, validation, and testing. And then, after a satisfactory model
is constructed, the P-scores are calculated. Finally, based on the
calculated P-scores, the neurodegenerative pattern analyses, in-
cluding six phases, that is, a) mining neurodegenerative brain
regions, b) recognizing cognitive impairment stages, c) analyz-
ing neurodegeneration trends, d) analyzing spatial connectivity,
e) analyzing spatial-temporal connectivity, and f) analyzing neu-
rodegenerative progression patterns, are conducted in the sec-
ond part. Specifically, we first investigate the neurodegenerative
brain regions in each AD MRI image. Second, the cognitive im-
pairment stage is identified. Third, while only space is fixed in
longitudinal neuroimaging studies, the approximate monotonic-
ity in P-scores with varying time points is examined for each neu-
rodegenerative brain region. Fourth, when only the time point is
fixed in longitudinal neuroimaging studies, the spatial connec-
tivity across neurodegenerative brain regions is analyzed. Fifth,
while neither space nor time is fixed in longitudinal neuroimag-
ing studies, the spatial-temporal connectivity among the neu-
rodegenerative brain regions across available time points is stud-
ied. Sixth, multiple progression trajectories of structural neu-
rodegeneration across brain regions, that is, common sequential
patterns of brain region degeneration, are acquired, tested, and
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Figure 1. The main work of this study.

Table 1. Demographic and health-related information of the subjects included in the studied datasets. (The listed information is collected at the beginning
MRI examination of each subject retrieved in the databases.)

Dataset Database Category Number of subjects
(Male/Female | RightH/LeftH/AnyH)

Age [years] Weight [kg] MMSE CDR GDS

Training ADNI [27] AD 66 / 70 | 124 / 12 / - 76.0 ± 7.3 70.7 ± 13.8 23.2 ± 2.0 0.75 ± 0.25 1.60 ± 1.34

HC 86 / 76 | 153 / 9 / - 76.3 ± 5.4 73.8 ± 13.6 29.2 ± 1.0 0.00 ± 0.00 0.80 ± 1.08

Validation ADNI [27] AD 61 / 40 | 88 / 13 / - 74.3 ± 7.8 76.0 ± 15.9 23.4 ± 2.4 0.87 ± 0.31 1.71 ± 1.51

HC 45 / 55 | 91 / 9 / - 73.4 ± 5.7 76.2 ± 15.7 28.9 ± 1.3 0.00 ± 0.00 0.83 ± 1.34

Testing OASIS [28] AD 129 / 124 | 227 / 21 / 5 75.5 ± 7.6 81.3 ± 17.0 23.3 ± 5.3 0.82 ± 0.49 3.64 ± 2.48

HC 156 / 97 | 224 / 22 / 7 67.0 ± 9.4 85.3 ± 18.2 29.1 ± 1.2 0.00 ± 0.00 4.24 ± 2.68

LeftH, left-handed; RightH, right-handed; AnyH, ambidextrous; MMSE, mini mental state examination;[30] CDR, clinical dementia rating;[31] GDS, geriatric depressions scale.[32]

Note: The age, weight, MMSE, CDR, and GDS are reported as mean ± std.

compared with the reported patterns in Braak 1991.[2] The data
sets involved in all the phases are detailed as follows.

In the part of deep-learning model (Ensemble 3DCNN) devel-
opment, the 298 and 201 non-overlapping subjects (including
AD and HC subjects) are enrolled from the ADNI database[27]

for the model (Ensemble 3DCNN) training and validation, respec-
tively. Among them, most subjects underwent repeated sMRI ex-
aminations at multiple time points to form a longitudinal image
sequence with mainly ≈3–6 time points (i.e., sMRI images). In
total, 1284 (AD:482; HC:802) and 871 (AD:336; HC:535) sMRI
images are included in the training and validation datasets, re-
spectively. In the training and validation phase, the Ensemble
3DCNN is trained and validated with the beginning sMRI im-
age of each training subject (AD:136; HC:162) and the begin-
ning sMRI image of each validation subject (AD:101; HC:100)
retrieved in the ADNI database, respectively. The performance
of a trained Ensemble 3DCNN for AD prediction is examined
on the testing dataset containing the beginning sMRI image
of each testing subject (AD:253; HC:253) retrieved in the OA-
SIS database,[28] another AD neuroimaging database. The perfor-
mance of a trained Ensemble 3DCNN for AD prediction is detailed
in the Supporting Information (i.e., Supplementary Material). We
also provided the comparison results with other algorithms as
Supporting Information. The demographic and health-related in-
formation of participants in the experiments is summarized in
Table 1.

In the part of neurodegenerative pattern analysis, we further
focus on AD subjects who meet the following three criteria in
the ADNI database (including all samples in the training and

validation datasets): 1) his/her longitudinal image sequence con-
tains the images acquired at no less than two time points; 2) all
sMRI images in his/her longitudinal image sequence are cor-
rectly classified by the Ensemble 3DCNN; 3) with the neuroimag-
ing biomarker, P-score, at least one degenerative brain region is
identified in his/her longitudinal image sequence. In total, 167
AD subjects and their corresponding 638 longitudinal sMRI im-
ages are studied to explore the neuroimaging patterns of neu-
rodegeneration in AD. After the neurodegenerative progression
patterns are acquired with the ADNI database, the generalization
of these patterns is also verified on the longitudinal image data in
the OASIS database and the results are presented in the Support-
ing Information. Figure 2 illustrates the data selection flowchart
in this study, and the detailed information of sMRI images in-
volved in the six pattern analysis phases is shown in Table 2.

In sum, 2369 (= 482+162+336+535+301+553) T1-weighted
structural MRI images of 1005 $=136+162+101+100+253+253)
participants from ADNI and OASIS studies are applied to model
derivation, validation, testing, and pattern analysis.

2.2. The DL-Extracted Neuroimaging Biomarker P-Score
Facilitates Showing the Atrophy of the Classical Brain Regions
Involved in AD

This section is corresponding to the two phases in the part of neu-
rodegenerative pattern analysis: mining neurodegenerative brain
regions and recognizing cognitive impairment stages, shown
in Figure 1. Given an sMRI image, a neuroimaging biomarker
named P-score could be detected by mapping the AD predictive
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Figure 2. The data selection flowchart of this study. See the footnote of Table 2 for details on criteria 1, 2, and 3.

Table 2. Statistical information on subjects and their sMRI images involved in different phases of this study.

Dataset Category\ # of
images

No. of subjects with various no. of sMRI images in his/her longitudinal image sequence No. of sMRI images

1 2 3 4 5 6 7 8 9 10 11 Total ⩾2 Total Criterion 2

Training AD 14 13 30 65 5 1 3 5 – – – 136 122 482 468

(ADNI [27]) HC 7 10 13 27 51 33 7 4 7 2 1 162 –a) 162 –

Validation AD 15 16 12 42 13 2 – 1 – – – 101 86 336 321

(ADNI [27]) HC 5 1 7 17 23 33 2 4 3 2 3 100 –a) 535 –

AD for w/o any criterion 29 29 42 107 18 3 3 6 – – – 237 208 818 789

Analysis Criterion 1 24 25 37 96 16 3 3 4 – – – 208 184 720 696

(ADNI [27]) Criterion 1 and 3 0 22 33 86 16 3 3 4 – – – 167 167 638 638

AD (w/o any
criterion)

208 42 3 – – – – – – – – 253 45 301 93

Testing AD (Criterion 1) 155 24 2 – – – – – – – – 181 26 209 54

(OASIS [28]) AD (Criterion 1
and 3)

155 20 2 – – – – – – – – 177 22 201 46

HC 102 76 38 17 7 9 4 – – – – 253 –(a) 553 –

Criterion 1: Ensemble 3DCNN correctly classifies all images in the longitudinal image sequence of a subject; Criterion 2: The longitudinal image sequence contains the sMRI
images acquired at no less than two time points; Criterion 3: At least one brain region is labeled as degeneration via the neuroimaging biomarker, that is, P-score, among all
images in the longitudinal image sequence of a subject. a)For the 162, 100, and 253 HC subjects in the training, validation, and testing datasets, respectively, shown in Table
1, no longitudinal image sequence has been utilized in pattern analysis phases of this study.

scores of the Ensemble 3DCNN to 246 fine-grained regions in the
Brainnetome Atlas.[29]

While P-score acts as a regional biomarker associated with the
probability of a brain region’s involvement in AD progression,
it effectively indicates the degree of neurodegeneration in each
brain region.

For the convenience of observation, the P-score value for each
brain region is normalized to the range of [0,1]. We sum up P-
scores of all brain regions to get the whole-brain P-score, denoted
as P-scorewhole, to assess the degeneration of the entire brain. The
higher P-score value, the higher degree of neurodegeneration. In
Figure 3, we visually illustrate the average P-score of each brain
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Figure 3. Illustration of the DL-extracted neuroimaging biomarker (P-score) in the 638 longitudinal sMRI images from the 167 AD subjects in the ADNI
dataset.

region in the 638 longitudinal sMRI images from the 167 AD
subjects in the ADNI[27] dataset. It is shown that the degree of
neurodegeneration varies from region to region.

TheEnsemble 3DCNN performs well in classifying sMRI im-
ages of AD subjects from those of HC, whose classification
accuracy reaches 90% and 79% on the validation and testing
datasets, respectively (see the Supporting Information for de-
tails). As shown in Table 2, the Ensemble 3DCNN correctly recog-
nizes 720 of 818 AD sMRI images in the training and validation
datasets from the ADNI database.[27]

We assume that the brain regions’ P-scores (after normaliza-
tion) of AD patients follow a normal distribution, and design the
threshold for neurodegeneration labeling based on the mean and
standard deviation (std) of all brain regions’ P-score among all
the AD sMRI images correctly identified by the Ensemble 3DCNN
(i.e., 720 sMRI images from 208 AD subjects as shown in Table 2
and Figure 2). According to the statistics and comparisons of rel-
evant trials, it is observed that a brain region is most likely not
involved with the neurodegeneration associated with AD (Speci-
ficity = 0.99) if its P-score is lower than 𝜆 = mean + 2 std = 0.73.
Here, mean and std are the mean and the standard deviation of
the P-scores of all brain regions in the 720 AD sMRI images cor-
rectly identified by the Ensemble 3DCNN, respectively.

Therefore, we consider the brain regions with P-score>𝜆 as
those involved with the neurodegeneration caused by AD, that is,
the neurodegenerative brain regions. In the ADNI database,[27]

208 AD subjects have sMRI images collected at no less than two
time points, and 167 of the 208 AD subjects are correctly identi-
fied by the trained Ensemble 3DCNN and have at least one neu-
rodegenerative brain region labeled by P-score. An AD subject
is considered to be correctly identified by the trained Ensemble
3DCNN if the model correctly classifies all the sMRI images in
his/her longitudinal image sequence. Here, we select the 167 AD
patients and the corresponding 638 MRI images for the subse-
quent pattern analysis experiments.

Our analytical results show that the left medial amygdala
(L.mAmyg), the left nucleus accumbens (L.NAC), and the left
lateral amygdala (L.lAmyg) are found to be the most common

regions affected by AD. Here, the prefix capital letters L and R of
a brain region label (e.g., L.mAmyg) refer to the left and the right
cerebral hemisphere, respectively.

Specifically, the three brain regions are considered as neurode-
generative in 82.60% (527 sMRI images), 80.72% (515 sMRI im-
ages), and 73.20% (467 sMRI images) of the 638 sMRI images la-
beled with AD (i.e., AD sMRI images), respectively. The common
neurodegenerative brain regions, which frequently occur among
the 167 AD subjects, are listed in Table 3. Here, Apriori,[33] a fre-
quent item set mining algorithm, is applied to extract the com-
mon neurodegenerative brain regions in AD. The support rate is
set as 0.5. The reported frequency corresponding to a brain region
(/brain regions) in Table 3 means the probability that it is (/they
are) neurodegenerative among the 638 sMRI images labeled with
AD. Most of these common neurodegenerative brain regions are
located in the basal portions of the putamen and accumbens nu-
cleus. This result is consistent with amyloid deposits reported in
Braak 1991.[2] In addition, the neurodegenerative brain regions
highly ranked by P-score, such as the amygdala, nucleus accum-
bens, agranular insular cortex, and hippocampus, roughly match
the isocortex, basal magnocellular complex, and transentorhinal
regions identified in Braak 1991.[2] It is observed that neurode-
generation often occurs in the left brain hemisphere. This might
be associated with the fact that most subjects, that is, 89.45% (212
of 237) AD subjects and 93.13% (244 of 262) of the healthy con-
trols, are right-handed. See Table 1 for detailed information about
the examined subjects. For more intuition, we also visualize the
probability map of brain neurodegeneration in the AD popula-
tion in the Supporting Information.

In addition to identifying the common neurodegenerative
brain regions in AD progression, it is found that the P-scorewhole,
which is the sum of P-score of all the brain regions, is more dis-
criminative to recognize the cognitive impairment stage of AD
subjects in comparison with the existing radiomic features.[34]

Here, eight radiomic features, that is, gray matter volume in cor-
tical layer (volume), surface area of cortical layer (area), intrinsic
curvature index of cortical layer (curvind), rectified mean curvature
of cortical layer (meancurv), folding index and intrinsic curvature
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Table 3. Frequent item sets in the neurodegenerative brain regions of the 638 AD sMRI images.

Rank Item set Frequency Rank Item set Frequency

1 { L.mAmyg } 82.60% 11 { L.vId/vIg, L.lAmyg } 68.50%

2 { L.NAC } 80.72% 12 { L.vIa, L.vId/vIg, L.lAmyg } 68.50%

3 { L.mAmyg, L.NAC } 79.00% 13 { L.TI } 67.87%

4 { L.lAmyg } 73.20% 14 { L.TI, L.vIa } 67.87%

5 { L.vIa } 71.79% 15 { L.TI, L.lAmyg } 67.87%

6 { L.vIa, L.lAmyg } 71.79% 16 { L.TI, L.vIa, L.lAmyg } 67.87%

7 { L.mAmyg, L.lAmyg } 70.53% 17 { L.TI, L.vId/vIg } 66.93%

8 { L.vIa, L.mAmyg } 69.28% 18 { L.lAmyg, L.NAC } 66.93%

9 { L.vId/vIg } 68.50% 19 { L.TI, L.vIa, L.vId/vIg, L.lAmyg } 66.93%

10 { L.vIa, L.vId/vIg } 68.50% 20 { L.mAmyg, L.lAmyg, L.NAC } 66.93%

Figure 4. Receiver operating characteristic curves (ROC curves) in the three binary classification tasks on the recognition of different cognitive impair-
ment levels indicated by MMSE using P-scorewhole and the existing radiomic features,[34] respectively.

index of cortical layer (foldind), average value of cortical thickness
(thickness), standard deviation of cortical thickness (thicknessstd),
integrated rectified Gaussian curvature of cortical layer (Gauscurv),
are measured for sMRI images using the Surfer Software Suite
(https://www.freesurfer.net/), which is an open-source software
suite for processing and analyzing (human) brain MRI images.
To illustrate this point, we perform three binary classification
tasks on recognizing different cognitive impairment levels in-
dicated by Mini Mental State Examination (MMSE),[35] that is,
worse or better than the mild (cutoff MMSE=25), moderate (cut-

off MMSE=20) or severe (cutoff MMSE=10) cognitive impair-
ment stages, using P-scorewhole. Here, 523 of 638 images of AD
subjects are selected for the classification experiment, because
the remaining 115 images have no corresponding MMSE val-
ues or radiomic feature value(s). The experimental results corre-
sponding to the P-scorewhole and the existing radiomic features[34]

are shown in Figure 4.
The first sub-figure (i.e., at the top-left corner) in Figure 4 il-

lustrates the receiver operating characteristic curve (ROC curve)
of recognizing the cognitive impairment stages using the P-

Adv. Sci. 2023, 10, 2204717 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2204717 (6 of 19)

 21983844, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202204717, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advancedscience.com

Table 4. Neurodegeneration trend in the common neurodegenerative brain regions.

Brain region Average P-score
among AD subjects

Percentage of AD patients with increased P-score

Abbreviation Name Continuously With slight fluctuations Total

L.mAmyg Medial amygdala 0.798 42.5% 34.7% 77.2%

L.NAC Nucleus accumbens 0.791 49.7% 33.5% 83.2%

L.lAmyg Lateral amygdala 0.764 38.3% 30.0% 68.3%

L.vIa Ventral agranular insula 0.760 38.3% 31.2% 69.5%

L.TI Area TI 0.747 41.3% 30.0% 71.3%

L.vId/vIg Ventral dysgranular and granular insula 0.745 37.1% 34.2% 71.3%

R.mAmyg Medial amygdala 0.738 55.7% 30.5% 86.2%

R.NAC Nucleus accumbens 0.735 50.3% 35.3% 85.6%

L.A35/36r Rostral area 35/36 0.733 41.3% 34.1% 75.4%

L.A38l Lateral area 38 0.727 38.3% 32.4% 70.7%

L.rHipp Rostral hippocampus 0.694 50.9% 34.1% 85.0%

L.A28/34 Area 28/34 (EC) 0.677 55.1% 31.1% 86.2%

R.A28/34 Area 28/34 (EC) 0.671 57.5% 31.1% 88.6%

R.lAmyg Lateral amygdala 0.670 45.5% 38.9% 84.4%

L.vmPu Ventromedial putamen 0.655 47.3% 31.7% 79.0%

R.vId/vIg Ventral dysgranular and granular insula 0.653 47.3% 36.5% 83.8%

R.A35/36r Rostral area 35/36 0.650 43.1% 40.7% 83.8%

R.vIa Ventral agranular insula 0.647 42.5% 39.5% 82.0%

R.rHipp Rostral hippocampus 0.635 60.5% 31.1% 91.6%

Average 0.710 46.4% 33.7% 80.2%

scorewhole value for an AD subject in the three binary classifica-
tion tasks. In the first sub-figure, P-scorewhole exhibits a decent
ability to identify severe cognitive impairment (Area under the
ROC curve, i.e., AUC=71.0% with p<0.001 for MMSE ⩽10). The
AD classification results of the P-score are competitive to those of
Thickness and Thicknessstd. In comparison with the P-scorewhole,
most existing radiomic features[34] (except Thickness and Thick-
nessstd) are NOT good in directly recognizing the severe cognitive
impairment level. Plus, although the obtained AUC results are
relatively low when recognizing the mild or moderate cognitive
impairment level with the P-scorewhole, as shown in Figure 4, they
are still better than those corresponding AUC results obtained
with the radiomic features. The above validation experiments in-
dicate that P-scorewhole could better predict the cognitive impair-
ment status of AD subjects than most existing eight radiomic
features.[34] Moreover, the correlation between P-scorewhole and
MMSE value is shown in the Supporting Information. For com-
parison, we also measure the eight radiomic features for sMRI
images and plot the scatter diagram of these features and MMSE
values in the Supporting Information.

2.3. The DL-Extracted Neuroimaging Biomarker (P-Score)
Facilitates Showing the Progression Patterns of
Neurodegeneration in AD as Defined Neuropathologically

This section is corresponding to the three phases in the part
of neurodegenerative pattern analysis: analyzing neurodegener-
ation trends, spatial connectivity, and spatial-temporal connectiv-
ity, shown in Figure 1. Advanced research[36,37] has indicated that

AD tends to progress in a continuous and irreversible manner.
Amyloid, t-tau, NFTs, and other biochemical substances associ-
ated with nerve damage gradually accumulate in AD progression.
The phenomena are also observed through the lens of the DL-
extracted neuroimaging biomarker (P-score). We divide the value
of P-score at the region level into 20 grades (with a range of 0.05
for each degeneration grade) and investigate the fluctuations of
P-score for each brain region in the longitudinal sMRI images of
an AD subject. As shown in Table 2, the 167 AD subjects with
longitudinal sMRI images collected at multiple time points are
enrolled from ADNI database for examination. Statistical results
are summarized in Table 4. In the neurodegenerative brain re-
gions listed in Table 4, the grade of P-score continues to rise (or
hold unchanged) as the disease progresses for ≈46.4% of AD sub-
jects on average. Around 33.7% of AD subjects get increased P-
scores in the frequently labeled neurodegenerative brain regions
over time with slight fluctuations. Here, an increase with slight
fluctuations means that there is an acceptable decline (<0.1) in
P-score value over time, and the grade of P-score at the last time
point is higher than (or equal to) the one at the beginning. In
summary, P-scores of the common neurodegenerative brain re-
gions listed in Table 4 increase over time in more than 80% of
AD subjects. In contrast, this deterioration trend of neurodegen-
eration can not be directly detected with the existing radiomic
features.[34]

We consider that two brain regions are spatially adjacent if
they respectively contain one of the two contiguous voxels, which
share one common corner at least. It is observed that most neu-
rodegenerative brain regions identified via P-score are spatially
interconnected. In only a few AD sMRI images, a small num-

Adv. Sci. 2023, 10, 2204717 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2204717 (7 of 19)
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Table 5. Results of spatial connected component analysis for the neurodegenerative brain regions in AD sMRI images.

Model No. of connected
components

Left brain hemisphere Right brain hemisphere Whole brain

No. of images Percentage No. of images Percentage No. of images Percentage

=0 116 18.18% 255 39.97% 89 15.56%

⩽1 544 85.27% 623 97.65% 231 36.21%

Ensemble ⩽2 635 99.53% 638 100% 585 91.69%

3DCNN ⩽3 638 100 % – – 631 98.90%

⩽4 – – – – 637 99.84%

⩽5 – – – – 638 100 %

Figure 5. Different numbers of spatially connected components in the brain images of three different AD subjects. (Best view in color. Different regions
are visualized with different colors.)

ber of neurodegenerative brain regions are found to be sporad-
ically isolated. To validate this observation, we apply the con-
nected component analysis (CCA) algorithm (depth first search
algorithm,[38] i.e., DFS) to count the number of connected com-
ponents in the neurodegenerative brain regions for each AD
sMRI image. Details about the counting of connected compo-
nents are introduced in the method section. As summarized in
Table 5, there are no more than three connected components in
over 98% (631 of 638) of AD sMRI images. Two connected com-
ponents (one on each hemisphere of the brain in most cases) are
detected in more than half of AD sMRI images, that is, around
55.5% (354 of 638). As a visualization example, sMRI images with
different numbers of connected components are mapped onto
the brain atlas in Figure 5. Based on the results of spatial con-
nectivity analysis in Table 5, the neurodegenerative brain regions
caused by AD are more likely to be spatially connected at any time
in AD progression.

The spatial-temporal connectivity of the neurodegenerative
brain regions affected by AD has also been examined in the lon-
gitudinal sMRI images of AD subjects. Here, in the longitudi-
nally adjacent MRI images of an AD subject, the same brain re-
gions are considered spatio-temporal adjacent. We detect at least
one neurodegenerative region in the longitudinal sMRI images
of each of the 167 AD subjects using P-score. Since we set 𝜆

with a strict threshold to ensure the reliability in detecting neu-
rodegenerative regions, no neurodegenerative brain region is de-
tected via P-score in the 17 of 184 AD subjects, as shown in
Table 2. Similar to the spatial connectivity analysis in an sMRI
image at a single time point, the CCA algorithm is applied to
examine the spatial-temporal connectivity of neurodegenerative
brain regions detected in the longitudinal sMRI images. Results

of spatial-temporal CCA for the neurodegenerative brain regions
caused by AD are summarized in Table 6. Compared with the
results in Table 5, no significant shift is detected in the percent-
ages located in each range of the number of connected compo-
nents. This result means that the number of connected compo-
nents does not sharply increase even if images taken at different
time points in a longitudinal sMRI sequence are added into the
analysis. In other words, the connectivity of the neurodegener-
ative brain regions acquired at a single time point holds up to
longitudinal (multiple time points) analysis during AD progres-
sion.

2.4. The DL-Extracted Neuroimaging Biomarker (P-Score)
Facilitates Identifying the Involvement Sequence of
Neurodegenerative Brain Regions Affected by AD Over Time

This section is corresponding to the sixth phase in the part
of neurodegenerative pattern analysis, that is, analyzing neu-
rodegenerative progression patterns, shown in Figure 1. In this
section, first, the 638 images from the 167 AD patients are divided
into different stages of AD according to their corresponding
MMSE values. Second, the proportion of common neurodegen-
erative brain areas was analyzed for the images corresponding to
different stages of the disease. The aim is to answer the question
that whether the neurodegenerative percentage of each brain
region in the 638 images varies from stage to stage and what the
patterns are. Third, for these 167 AD patients, the first image at
each stage of AD is selected for analysis to see if the neurodegen-
erative proportion of each brain region in the 167 AD patients
varies across stages. Fourth, we analyze the longitudinal imaging

Adv. Sci. 2023, 10, 2204717 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2204717 (8 of 19)

 21983844, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202204717, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advancedscience.com

Table 6. Results of spatial-temporal connected component analysis for the neurodegenerative brain regions in longitudinal AD sMRI images.

Model No. of connected
components

Left brain hemisphere Right brain hemisphere Whole brain

No. of patients Percentage No. of patients Percentage No. of patients Percentage

=0 9 5.39% 34 20.36% 0 0.0%

Ensemble ⩽1 136 82.04% 159 95.21% 29 17.37%

3DCNN ⩽2 166 99.40% 167 100% 144 86.23%

⩽3 167 100% – – 165 98.80%

⩽4 – – – – 167 100%

Table 7. Frequency of the neurodegenerative brain regions in all MMSE
levels.

Degenerative
region

Cognitive impairment level (MMSE [35])

Normal
([27, 30])

Mild
([21, 26])

Moderate
([10, 20])

Serve
([0, 9])

L.mAmyg 83.3% 74.8% 79.4% 86.7%

L.NAC 83.3% 73.6% 80.0% 93.3%

L.lAmyg 61.1% 63.2% 70.6% 80.0%

L.TI 61.1% 58.5% 65.6% 73.3%

L.vIa 55.6% 62.3% 69.4% 80.0%

L.A35/36r 55.6% 53.5% 62.8% 73.3%

R.mAmyg 55.6% 53.1% 65.6% 80.0%

L.vId/vIg 50.0% 58.8% 67.2% 80.0%

L.A38l 50.0% 54.4% 62.2% 66.7%

R.NAC 50.0% 51.6% 60.6% 80.0%

L.rHipp 27.8% 37.4% 47.2% 66.7%

L.A28/34 16.8% 23.0% 29.4% 46.7%

R.A28/34 11.1% 18.9% 21.7% 40.0%

Note: Colors red, blue, green, and dark are utilized to indicate the data in the range
[80%, 100%], [60%, 80%), [40%, 60%), and [0%, 40%), respectively.

data of each of the 167 AD patients to observe the spatial relation-
ship between the newly neurodegenerative brain region(s) and
the previously neurodegenerative brain region(s) for each AD
patient as the disease progresses. Finally, we investigate whether
common sequential patterns of neurodegenerative brain regions
could be observed in these 167 AD patients. And if so, we
further acquire them. In addition, to test the acquired sequential
patterns from the ADNI database, we employ the longitudinal
image data in the OASIS cohort to test the obtained patterns,
and present the testing results in the Supporting Information.

As shown in Figure 2, the 531 sMRI images of the 163 AD
subjects are divided into several groups according to their cog-
nitive impairment level (MMSE[35] value). Here, the 531 of the
638 sMRI images of AD subjects are selected for the experi-
ment, because the remaining 107 images have no correspond-
ing MMSE values. We explore the frequent item-sets consisting
of the neurodegenerative regions in each level (normal: MMSE
∈ [27, 30]; mild: MMSE ∈ [21, 26]; moderate: MMSE ∈ [10, 20];
severe: MMSE ∈ [0, 9]) to analyze the process of neurodegenera-
tion at different stages of AD. As summarized in Table 7, in the
early stage of cognitive impairment (MMSE ∈ [27, 30]), L.mAmyg

and L.NAC have been neurodegenerative in most (over 83%) AD
sMRI images. Moreover, in more than 55% of AD sMRI im-
ages in the early cognitive impairment stage, the degeneration
is found in the L.lAmyg, L.TI, L.vIa, L.A35/36r, and R.mAmyg.
Besides, the L.vId/vIg, the A38l and R.NAC are degenerative in
over 50% of AD sMRI images in the early stage of cognitive
impairment (MMSE ∈ [27, 30]). As the cognitive impairment
further worsens (MMSE < 20), L.rHipp is increasingly involved
among the 638 sMRI images of the 167 AD subjects. In general,
the frequency of the neurodegenerative brain regions (such as
L.lAmyg, L.vIa, L.vId/vIg, L.A38l, R.NAC, L.rHipp, L.A28/34, and
R.A28/34) rises with increasing cognitive impairment.

We further analyze the involvement sequence of neurodegen-
erative brain regions in the 638 longitudinal sMRI images of the
167 AD subjects shown in Table 2.

According to the experimental results, it is found that
L.mAmyg, L.NAC, and L.lAmyg are the most common neurode-
generative regions in the early stage of AD subjects, accounting
for 68.26% (114), 65.87% (110), and 58.08% (97) of the 167 AD
subjects, respectively. As time goes on, more brain regions could
be involved in degeneration in 90.42% (151) of the 167 AD sub-
jects.

Moreover, it is interesting to notice that the newly added neu-
rodegenerative region or regions are likely to be around the pre-
vious one(s). This may be the major reason for no significant
change between the results of spatial and spatial-temporal con-
nectivity analysis, as exhibited in Tables 5 and 6, respectively.
More specifically, we notice that the number of connected com-
ponents increases over time in 78 (out of 167) AD subjects. In 15
out of the rest 89 AD subjects, the number of connected compo-
nents is reduced because the newly involved neurodegenerative
region or regions make those isolated previously get connected.
The remaining 74 AD subjects keep the number of connected
components unchanged, as the newly added neurodegenerative
regions are around those previously existing.

Furthermore, we observe that neurodegeneration in caudal or
(dorso)lateral regions commonly occurs after the atrophy in the
basal area. To verify this observation, we obtain the frequent se-
quential patterns of items (i.e., the neurodegenerative regions),
in the longitudinal AD sMRI images. Here, Sequential PAttern
Discovery using Equivalence classes (SPADE) algorithm[39] is ap-
plied for mining frequent sequential patterns.

The most common sequential patterns are partially listed in
Table 8. That is, Table 8 lists neurodegenerative sequences with
a supporting rate greater than 18%. More common neurode-
generative sequences and other relevant results can be found

Adv. Sci. 2023, 10, 2204717 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2204717 (9 of 19)
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Table 8. Frequent sequential patterns of the neurodegenerative brain regions in the longitudinal sMRI image sequences of AD subjects.

No. Frequent sequential patterns Frequency

1 {L.NAC } ←→ { #, L.A28/34} 28.1%

2 {L.mAmyg, L.NAC} ←→ { #, L.A28/34} 27.0%

3 {L.NAC} ←→ { #, R.A28/34} 24.0%

4 {L.vIa, L.lAmyg} ←→ { #, L.vmPu} 23.4%

5 { L.mAmyg } ←→ { #, L.vmPu} 23.4%

6 {L.mAmyg} ←→ { #, L.rHipp} 23.4%

7 {L.vIa, L.mAmyg, L.lAmyg, L.NAC} ←→ { #, L.A28/34} 23.4%

8 {L.mAmyg, L.NAC} ←→ { #, L.vmPu} 22.8%

9 {R.NAC} ←→ { #, R.A28/34} 22.8%

10 {L.NAC} ←→ { #, L.rHipp} 22.8%

11 {L.NAC} ←→ { #, R.mAmyg} 22.8%

12 {R.mAmyg} ←→ { #, R.A28/34} 22.8%

13 {L.mAmyg, L.NAC} ←→ { #, R.A28/34} 22.8%

14 {L.vIa, L.mAmyg, L.lAmyg } ←→ { #,L.vmPu} 22.8%

15 {L.A38l, L.TI, L.vIa, L.vId/vIg, L.mAmyg, L.lAmyg} ←→ { #, L.vmPu} 22.2%

16 {L.NAC} ←→ { #, R.NAC} 22.2%

17 {L.NAC, R.NAC} ←→ { #, R.A28/34} 22.2%

18 {L.vIa, L.mAmyg, L.lAmyg, L.NAC} ←→ { #, L.vmPu} 22.2%

19 {R.mAmyg, R.NAC} ←→ { #, R.A28/34} 22.2%

20 {L.A38l, L.A35/36r, L.TI, L.vIa, L.vId/vIg, L.mAmyg, L.lAmyg} ←→ { #, L.vmPu} 21.6%

21 {L.mAmyg, R.mAmyg, L.NAC} ←→ { #, L.A28/34} 21.6%

22 {R.mAmyg, L.NAC, R.NAC} ←→ { #, R.A28/34} 21.6%

23 {L.mAmyg, L.NAC, R.NAC} ←→ { #, R.A28/34} 21.6%

24 {L.mAmyg, L.NAC} ←→ { #, L.rHipp} 21.6%

25 {L.TI, L.vIa, L.vId/vIg, L.mAmyg, L.lAmyg, L.NAC} ←→ { #, L.A28/34} 21.6%

26 {L.A38l, L.TI, L.vIa, L.vId/vIg, L.mAmyg, L.lAmyg, L.NAC} ←→ { #, L.vmPu} 21.6%

27 {L.mAmyg} ←→ { #, R.mAmyg} 21.0%

28 {L.mAmyg, R.mAmyg, L.NAC, R.NAC} ←→ { #, R.A28/34} 21.0%

29 {L.A38l, L.A35/36r, L.TI, L.vIa, L.vId/vIg, L.mAmyg, L.lAmyg, L.NAC} ←→ { #, L.vmPu} 21.0%

30 {L.mAmyg} ←→ { #, R.NAC} 20.4%

31 {L.vIa, L.lAmyg} ←→ { #, L.rHipp} 20.4%

32 {L.mAmyg, L.NAC} ←→ { #, R.mAmyg} 20.4%

33 {L.A35/36r, L.TI, L.vIa, L.vId/vIg, L.mAmyg, L.lAmyg, L.NAC} ←→ { #, L.A28/34} 20.4%

34 {L.A38l, L.TI, L.vIa, L.vId/vIg, L.mAmyg, L.lAmyg, L.NAC} ←→ { #, L.A28/34} 20.4%

35 {L.mAmyg, L.NAC, R.NAC} ←→ { #, L.A28/34} 19.8%

36 {L.vIa, L.mAmyg, R.mAmyg, L.lAmyg, L.NAC} ←→ { #, L.A28/34} 19.8%

37 {L.mAmyg, L.NAC} ←→ { #, R.NAC} 19.8%

38 {L.A38l, L.A35/36r, L.TI, L.vIa, L.vId/vIg, L.mAmyg, L.lAmyg, L.NAC} ←→ { #, L.A28/34} 19.8%

39 {L.A38l, L.A35/36r, L.TI, L.vIa, L.vId/vIg, L.mAmyg, L.lAmyg, L.rHipp, L.NAC} ←→ { #, L.vmPu} 19.2%

40 {L.mAmyg, R.mAmyg, L.NAC} ←→ { #, L.vmPu} 19.2%

41 {L.TI, L.vIa, L.lAmyg} ←→ { #, L.rHipp} 19.2%

42 {L.vIa, L.mAmyg, L.lAmyg} ←→ { #, L.rHipp} 19.2%

43 {L.vIa, L.mAmyg, R.mAmyg, L.lAmyg, L.NAC} ←→ { #, L.vmPu} 18.6%

44 {L.TI, L.vIa, L.mAmyg, L.lAmyg} ←→ { #, L.rHipp} 18.6%

45 {L.TI, L.vIa, L.vId/vIg, L.lAmyg} ←→ { #, L.rHipp} 18.0%

46 {L.mAmyg} ←→ { #, R.lAmyg} 18.0%

47 {L.vIa, L.lAmyg} ←→ { #, R.A28/34} 18.0%

48 {L.mAmyg, R.mAmyg, L.NAC, R.NAC} ←→ { #, L.A28/34} 18.0%

49 {L.TI, L.vIa, L.vId/vIg, L.mAmyg, R.mAmyg, L.lAmyg, L.NAC} ←→ { #, L.A28/34} 18.0%

50 {L.A38l, L.TI, L.vIa, L.vId/vIg, L.mAmyg, R.mAmyg, L.lAmyg, L.NAC} ←→ { #, L.vmPu} 18.0%

Note: Symbol # represents the elements in the antecedent.
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Figure 6. Illustration of multiple progression trajectories of structural neurodegeneration across brain regions discovered via P-score. (Best view in color.
Different regions are visualized in different colors, corresponding to the colors of their name abbreviations written at the bottom of each sub-figure.
Symbol # represents the elements in the antecedent.)

in the Supporting Information. According to this result, no se-
quential pattern with a supporting rate greater than 29% is ac-
quired, which indicates that heterogeneous neurodegenerative
sequences of brain regions might be involved in AD progres-
sion. Even so, multiple progression trajectories of neurodegen-
eration can be observed. 1) For the same brain region in both
hemispheres, the left side of the brain commonly degenerates
before the right. For instance, neurodegenerative sequences of
{L.NAC} ←→ {#, R.NAC} and {L.mAmyg}←→ {#, R.mAmyg} are de-
tected. 2) The brain neurodegeneration of AD subjects can start
in NAC and spread to mAmyg or vice versa. 3) rHipp) and/or
A28/34, and/or vmPu may be atrophy after the degeneration of
NAC and/or -mAmyg. 4) vIa and/or lAmyg may join the trajec-
tory cycle of NAC and mAmyg. 5) lAmyg and/or vIa may shrink
before the atrophy of A38l, and/or TI, and/or A35/36r, and/or
vId/vIg, followed by the degeneration of rHipp. The shrinkage of
entorhinal cortex (A28/34) and/or vmPu may also appear after
the degeneration of t A38l, and/or TI, and/or A35/36r, and/or
vId/vIg. More intuitively, these discovered multiple progression
trajectories of structural neurodegeneration across brain regions
are demonstrated in Figure 6. Also, we illustrate the neurodegen-
erative sequences of two AD subjects as examples in Figure 7.

3. Discussion

3.1. Summary of the Main Findings

In this literature, a new neuroimaging biomarker named P-score
is devised on the basis of the AD predictive scores from the En-

semble 3DCNN. Our results show the effectiveness of P-score
in identifying classical neurodegenerative brain regions, such as
the medial amygdala, nucleus accumbens, lateral amygdala, dur-
ing AD progression. Good capability in recognizing the subjects
with less severe cognitive impairment is achieved with the help
of P-score. Furthermore, together with DFS[38] and SPADE[39]

algorithms, P-score is utilized to help verify the spatial/spatial-
temporal connectivity and increased involvement of the neurode-
generative brain regions in AD progression. Although the ob-
tained involvement pattern seems to be heterogeneous in lon-
gitudinal AD sMRI images, multiple longitudinal trajectories of
involvement of neurodegenerative brain regions associated with
AD are detected via P-score.

3.2. Comparison to the Previous Work

Similar observations in terms of spatial-temporal connectivity
and continuity of neurodegenerative brain regions related to AD
are obtained via P-score, in comparison with those acquired via
biochemical markers (such as amyloid, t-tau, NFTs, and neuropil
threads (NTs)). Many neurodegenerative brain regions detected
with P-score are located within or near areas highlighted in Braak
1991.[2] P-score can facilitate revealing additional neurodegener-
ative patterns in comparison with Braak 1991.[2]

1) The area of NAC corresponds to the basal magnocellular com-
plex, where NFTs/NTs are observed sparsely and substantially
after Stages II and IV, respectively. In fact, a growing body

Adv. Sci. 2023, 10, 2204717 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2204717 (11 of 19)
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Figure 7. Examples of neurodegenerative sequences obtained via P-score for two AD subjects. (Best view in color. Different regions are visualized with
different colors. Due to page limit, P-score of the neurodegenerative brain regions is partially listed in the subfigures.)

of research has recently indicated apathy is one of the earli-
est signs of dementia, for example, the previous work[40] pro-
vides novel evidence for apathy as a prodrome of dementia.
Just as Guo 2022[41] mentioned, it is this neuronal damage
in the nucleus accumbens that likely causes the apathy and
motivational problems that can signal the earliest stage of
Alzheimer’s disease. This is consistent with the neurodegen-
erative sequence of NAC shown in Figure 6 to a great extent.

2) Area 28/34 (A28/34) and TI are entangled with the parahip-
pocampal gyrus (such as the subiculum, entorhinal, and
transentorhinal areas). Although these regions and the basal
magnocellular complex are commonly filled with a large
number of NFTs and NTs in the brain of AD subjects accord-
ing to Braak 1991,[2] obvious neurodegenerative sequence be-
tween the parahippocampal gyrus and the basal magnocel-
lular complex was NOT explicitly reported in Braak 1991.[2]

Here, with the examination of P-score among sMRI images
of AD subjects, the parahippocampal gyrus (A28/34) is found
to neurologically degenerate after the morphological change
in the basal magnocellular complex (NAC), which is partially
consistent with a shift in the distribution of temporal lobe at-
rophy with advancing disease.[42,43]

3) In the olfactory pathway, as the only sensory pathway that does
not relay in the thalamus, axons from mitral cells in the olfac-

tory bulb form the olfactory tract and synapse in various corti-
cal regions, for example, anterior olfactory nucleus, piriform
cortex, the medial amygdala (mAmyg) and entorhinal cortex
(A28/34). Especially, the medial amygdala (mAmyg) is a cen-
tral hub in the olfactory neural network. The brain regions of
mAmyg and A28/34 are involved in AD progression, which is
consistent with the invariable and severe involvement of the
olfactory areas of the brain in AD, just as indicated in Pear-
son 1985.[44] Here, the spread from medial amygdala to the
parahippocampal gyrus is explicitly disclosed in Figure 6. In
addition, the Amygdala and hippocampus (lAmyg, rHipp) are
the brain regions associated with the striate area, which is the
visual field characterized by amyloid depositions. Although
Braak et al.[2] observed NFTs/NTs accumulate in the striate
area in Stages V–VI of AD, they did not explicitly indicate
the neurodegenerative sequence between the amygdala and
hippocampus. In contrast, with P-score, we observe that the
amygdala (mAmyg, lAmyg) commonly changes in morphol-
ogy before the hippocampus (rHipp) does during AD progres-
sion, as shown in Figure 6.

4) There remains a slight bias between the neurodegenerative ar-
eas detected via P-score and those identified with biochemical
markers, for example, NFTs and NTs. Braak et al.[2] suggested
that the insula area (vIa, vIg) was less relevant to AD progres-
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sion, but this region is marked by P-score as a common neu-
rodegenerative region in early and advanced AD. However,
the previous researches[45–50] indicated that the insula may be
involved early in Alzheimer’s disease from the perspective of
insular gray matter (GM) loss, abnormal insular activities and
disrupted insular network etc., and that atrophy of the insular
cortex may contribute to the cognitive deficits typical of early
Alzheimer’s disease. This is consistent with the phenomena
exhibited in Figure 6.

5) The observation that the newly added neurodegenerative re-
gion or regions are likely to be around the previous one(s) sup-
ports the suggestion in the studies,[43,44] that is, the patholog-
ical changes in Alzheimer’s disease affect regions that are in-
terconnected by well-defined groups of connections and that
the disease process may extend along the connecting fibers,
to a great degree.

The differences between observations with P-score and those
in Braak 1991[2] could be due to individual differences in the
subjects enrolled in the different trials. Another reason might
be that biochemical markers focus on areas where interneuronal
transmission mediators diffuse, while the examination with P-
score identifies brain regions where morphological changes are
significant. After all, the DL-extracted neuroimaging biomarker
(i.e., P-score) and the biochemical markers focus on struc-
tural/morphological and neuropathological changes of the brain,
respectively. Meanwhile, since the structural changes in the AD
brain are associated with the AD neurodegenerative progression,
the progression patterns identified with biochemical markers are
consistent with those disclosed with the DL-extracted neuroimag-
ing biomarker to some extent. In addition, as AD subjects en-
rolled in the ADNI database[27] are more likely to be in the early
or middle stages, the patterns of AD progression detected via P-
score are more in line with those in the middle stages (Stages
II–IV) of Braak 1991.[2] As illustrated in Figure 6, the neurode-
generation of NAC (basal magnocellular complex, where NFTs and
NTs present after Stage I) occurs before that of A28/34 (subiculum,
where NFTs and NTs are detected after Stage III) and that of rHipp
(striate area, where NFTs and NTs present after Stage III).

In addition, this study is different from the previous work[51–55]

in the method and experimental results. Specifically, the method
mentioned in Qiu 2020[51] uses a deep learning model (fully con-
volutional neural network, FCNN) to learn volumetric patches
obtained by random sampling in the brain to obtain disease prob-
ability maps; and then, from the maps, the voxels of high-risk
were selected to train a multilayer perceptron (MLP) for binary
classification of disease states, that is, AD versus HC; mean-
while, an MLP model was trained to classify AD and NC using
non-neuroimaging features, including age, gender, and MMSE;
finally, these two MLP models were fused for binary classifica-
tion of AD and NC. Although this method of obtaining the dis-
ease probability map is somewhat similar to one or two steps
in the P-score calculation, the difference is very obvious. First,
the two methods have different focuses. The method proposed
in Qiu 2020[51] mainly focuses on using the voxels of high-risk
to improve the effectiveness of binary classification for individ-
uals based on the MRI images at a single time point; the P-
score proposed here mainly focuses on a probabilistic score re-
garding membership of the given input sMRI image to the AD

class as the output of the trained binary classification model, that
is, Ensemble 3DCNN, while an MRI image is input. Second, the
two methods have different purposes. The purpose of propos-
ing the disease probability map in Qiu 2020[51] is to be able to
perform binary classification with higher accuracy and better in-
terpretability for individuals using the MRI images at a single
time point while the purpose of advocating the P-score is to de-
tect the neurodegenerative patterns of AD progression through
the eyes of neuroimaging. Finally, the research scope and results
accomplished with the two methods are different. Qiu 2020[51]

focuses on the image-feature MLP model based on the disease
probability map and its fusion model combined with the non-
image feature MLP model to obtain an interpretable DL frame-
work with satisfactory prediction performance verified by multi-
centre experiments and practicing neurologists. In contrast, this
paper focuses on, with the help of P-score derived from Ensem-
ble 3DCNN, investigating the neurodegenerative brain regions
in AD; identifying the cognitive impairment stage; recognizing
the time-varying, space-varying and spacetime-varying neurode-
generative patterns associated with the identified neurodegener-
ative brain regions (i.e., approximate monotonicity and connec-
tivity) when only space, only time, and neither space nor time
are fixed in longitudinal neuroimaging studies, respectively; ac-
quiring and testing multiple progression trajectories of structural
neurodegeneration across brain regions, followed by comparing
them with the reported patterns in Braak 1991[2]; and at last, quite
interesting and promising experimental results are obtained.

In Feng 2022,[52] the “deep learning MRI” score (DLMRI), de-
rived from the deep learning model trained on AD dementia, is
proposed to detect prodromal AD and to predict time to dementia
progression. Meantime, a 3D class activation map is generated to
evaluate the regional contribution to AD classification. DLMRI
outperforms other neuroimaging biomarkers of neurodegener-
ation in prodromal AD and the biomarkers of amyloid and tau
pathology, which can support the P-score advanced here as a tech-
nical basis because both Feng 2022[52] and this study suggest that
the continuous output from the trained DL classification model
is reflective of the progressive structural patterns of AD pathol-
ogy. However, unlike P-score, DLMRI is unable to directly help
reveal the time-varying, space-varying and

spacetime-varying neurodegenerative patterns across brain re-
gions in AD progression.

In Giorgio 2022,[53] a robust and interpretable machine learn-
ing approach is utilized to quantify interactions between key
pathological markers (𝛽-amyloid, medial temporal lobe atrophy,
tau and APOE 4) at mildly impaired and asymptomatic stages
of AD. In Giorgio 2020,[54] a novel trajectory modeling approach
based on metric learning (i.e., generalized metric learning vector
quantization) is advocated to mine multimodal data from MCI
patients in the ADNI cohort to derive individualized prognostic
scores of cognitive declines due to AD. Yet, neither of these two
approaches can help disclose neurodegenerative patterns associ-
ated with brain regions involved in disease progression.

In Popuri 2020,[55] the ensemble-learning framework that
combines structural features in most discriminative ROIs is uti-
lized to create an aggregate measure of neurodegeneration in the
AD brain. Thus, as the output of the classifier ensemble and a
continuous scalar score, between [0–1], an MRI-based demen-
tia of Alzheimer’s type (DAT) score (MRDATS for short) is ad-
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vocated to mimic the continuous influence of the AD pathology
in the alterations observed in brain MR structural patterns. Al-
though it is possible for the score to be directly employed to quan-
tify the neurodegeneration inherent in the structural patterns in
the 3D MRI image of the individual, Popuri 2020[55] does NOT
present the acquired structural patterns or quantified neurode-
generation in them with the help of MRDATS. Meantime, the
proposed ensemble-learning framework has NOT taken advan-
tage of the powerful capability of deep learning in feature extrac-
tion and representation to generate the MRDATS.

Plus, as a matter of fact, the heterogeneity in AD,[56] that is,
variations in its clinical manifestations and biomarker longitu-
dinal trajectories, has been investigated, and several potential
subtypes have been identified in the recent studies.[57–63] Most
studies employ unsupervised clustering methods,[57–59] and some
leverage semi-supervised clustering methods.[59–61,64] Since the
datasets and methods used are different and the number of clus-
ters together with the anatomical patterns of subtypes vary across
studies, the results of these studies cannot be directly compared.
Anyway, the results of our study also further reveal the hetero-
geneity of AD in the neurodegenerative sequence of brain regions
to some extent. The next step might be to validate the proposed
methods and the obtained patterns here in a larger AD popula-
tion (together with other modalities including PET and/or single
nucleotide polymorphisms) and to investigate the heterogeneity
exhibited by the acquired patterns.

In sum, as an DL-extracted neuroimaging biomarker, P-score
offers several additional advantages over existing biomarkers: 1)
P-score facilitates observing morphological changes in neurode-
generation at a fine-grained level on the basis of sMRI images.
According to the Brainnetome Atlas,[29] the whole brain is parti-
tioned into 246 regions. P-score can be helpful to elaborately as-
sess the degree of neurodegeneration in each brain region and
detect the neurodegenerative sequence among these small re-
gions. 2) P-score can act as a quantitative indicator that facili-
tates evaluating the probability of an event that a brain (region)
is impacted by AD-related neurodegeneration through the eyes
of neuroimaging. More importantly, P-score values are compa-
rable across different brain regions and/or across different in-
dividuals. 3) It is relatively intuitive and clinically easy to utilize
P-score to fine-grainedly track and predict AD progression in in-
dividuals and the effects of treatment on them since it is calcu-
lated on the basis of non-invasive sMRI images collected in vivo.
Hopefully, with the help of the proposed P-score here, AD pa-
tients will undergo an individualized staging evaluation on the
basis of an expert-consensus benchmark cohort built in an in-
teractive way between cohort and model with interdisciplinary
efforts to improve individualized diagnosis and therapeutic in-
tervention strategies.

3.3. Limitations

As Ensemble 3DCNN is a data-driven DL approach, the effective-
ness in analysis of neurodegenerative progression using P-score
is affected by the bias in data collection. Most subjects enrolled
in the ADNI study[27] could suffer from AD for some time be-
fore their first examination saved in the ADNI database. There-
fore, our method could hardly explore the neurodegeneration in

the initial stage of AD in terms of neuroimaging. Similarly, due
to the limited number of AD subjects available, the ability of P-
score to recognize neurodegeneration in the terminal stage of AD
has not been fully verified. Moreover, longitudinal sMRI images
of most subjects are collected at about 3–6 time points, resulting
in the inability of our experiments to explore long-term neurode-
generative patterns in AD ranging from initial to terminal stages.
The relatively small number of time points for data collection also
leads to the limited capability of the Ensemble 3DCNN model to
mine the underlying sequential patterns of neurodegeneration in
AD progression using sMRI images.

3.4. Future Development and Direction

On the one hand, the clinical implication and heterogeneity of
the finding together with the generalizability of the advocated P-
score and method need to be further examined in a larger AD
population in future research. The proposed method may be use-
ful for in vivo staging of AD based on other image modalities
and multi-modality imaging, such as PET and other MRI modal-
ity, for example, T2-weighted-fluid-attenuated inversion recov-
ery (T2-FLAIR), proton-density weighted (PD), in a comprehen-
sive manner. Moreover, the interactions and associations among
brain regions during neurodegeneration of AD are other valu-
able topics, which we will further investigate to stimulate the in
vivo staging of AD. On the other hand, we will further enhance
the quantitative indicators derived from the state-of-the-art ex-
plainable deep learning models for fine-grained measuring the
progress of the disease based on neuroimaging in a more sophis-
ticated and interpretable way. The time bias problem in data col-
lection warrants alleviation and the sequence alignment method,
such as dynamic time wrapping, needs to be investigated. Data
mining algorithms using limited data will also be tested in P-
score sequences to explore more refined neurodegenerative pat-
terns in AD progression.

3.5. Contributions and Significance of the Work

Neurodegenerative trajectories: This study investigates the feasibil-
ity of DL in facilitating verifying the neurodegenerative changes
in AD progression. We reexamine human neurodegeneration
from the standpoint of neuroimaging and artificial intelligence,
which allows automatic exploration of trajectory patterns during
AD progression. Our method benefits from the powerful repre-
sentation capabilities of deep learning, enabling us to examine
subtle structural changes in the brain during AD using sMRI
images. The neurodegeneration patterns are detected at a fine-
grained level by analyzing the neurodegenerative sequences of
hundreds of brain regions. Our study helps stimulate the re-
search on fine-grained tracking and prediction of AD progres-
sion in individuals and the effects of treatments on them from
the perspective of the analysis of non-invasive in vivo neuroimag-
ing data.

Clinical impacts: We derive a new neuroimaging biomarker (P-
score) from the Ensemble 3DCNN model to detect critical neu-
rodegenerative changes in AD using sMRI. As a non-invasive in
vivo examination process based on sMRI images, our method
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Figure 8. Illustration of the Ensemble 3DCNN. a) Image pre-processing; b) Ensemble learning framework; c) Network architecture of each base classifier
(3DCNN).

helps identify and evaluate the various stages of AD. The disease
progression patterns detected via P-score might be applied to pre-
dict the next neurodegenerative brain region(s), neurodegenera-
tive course, and the associated impaired functions (e.g., clinical
symptoms) for individual AD subjects. Furthermore, it is with
the help of P-score that the easily available and repeatable sMRI
examination could provide more subtle and rigorous monitoring
for AD progression, which is valuable for tracking disease pro-
gression in individuals and the effects of treatment. In summary,
this study offers effective means and new scientific evidence de-
rived from DL models to detect fine-grained neurodegenerative
changes in the AD brain through the lens of neuroimaging.

4. Experimental Section
Deep Learning Model (Ensemble 3DCNN) Development: As illustrated

in Figure 8a, each pre-processed sMRI image (125 × 150 × 125) was diced
into 150 non-overlapped sMRI cubes (25 × 25 × 25) as the inputs of the
Ensemble 3DCNN model. Ensemble 3DCNN model consisted of the base
classifiers and a meta-classifier (Figure 8b). Each base classifier was a
3DCNN consisting of seven layers, as illustrated in Figure 8c. The meta-
classifier contained one convolutional layer (kernel size =1 × 12, stride =
1) and a fully connected layer (number of input channels = 64, number of
output channels = 2). Each base classifier was independently trained us-
ing all small sMRI cubes from the same position of the training sMRI
images with disease labels. 50% of sMRI cubes were randomly flipped
along the X −, Y −, or Z − axis to increase data diversity during the train-
ing of the base classifiers. To avoid the possible negative effect caused
by these poorly performed classifiers, base classifiers with recognition ac-
curacy lower than 70% on the validation dataset were eliminated. Here,
the 12 best-performing base classifiers were retained among the total 150
base classifiers, and their output features of the penultimate layers (64-
dimension features) were concatenated as 768 (= 64 × 12) features to in-

put into the meta-classifier. The meta-classifier was learned on the training
dataset with the guide of the disease labels. As the final output of Ensemble
3DCNN, the output of the meta-classifier was a 2D vector, in which these
two elements corresponded to the probabilities regarding membership of
the given input sMRI image to the class of AD or HC, that is, AD and HC
predictive scores, respectively.

In fact, the proposed Ensemble 3DCNN was employed to better balance
the two conflicting requirements of the model designed for analyzing the
progression pattern of AD, that is, strong generalizability and good inter-
pretability. It was expected that the progression patterns of AD embed-
ded in the trained Ensemble 3DCNN and the datasets were intuitively dis-
closed while the model achieved satisfactory generalization capabilities in
a data-driven way.

The proposed Ensemble 3DCNN contained multiple base classifiers and
a meta-classifier. For achieving good generalizability, the base classifiers
based on 3DCNN were employed to extract the compelling features from
the non-overlapping small sMRI cubes all over the brain, while a meta-
classifier was built to allot the most appropriate weights to the base classi-
fiers in a data-driven manner. The advocated Ensemble 3DCNN integrated
the prediction results of multiple base classifiers and learned a meta-
classifier to achieve satisfactory generalization capability during identify-
ing the labels of unseen sMRI images finally. Thus, the output of the Ensem-
ble 3DCNN, that is, the AD predictive score (probability) of an input image,
was decided by both the features extracted by the base classifiers and the
weights of the base classifiers allocated by the meta-classifier. Compared
with the other models, the proposed Ensemble 3DCNN achieved the best
prediction performance, shown in Table S2, Supporting Information.

Each base classifier was trained with all the small sMRI cubes in the
same position of the training images, as shown in Figure 8. Each base
classifier learned to predict the AD probability of an unlabeled image while
inputting the small sMRI cube in the same position as the one in which
all the small sMRI cubes of the training images were utilized for training
the base classifier from the unlabeled image. Since the same algorithm
of 3DCNN was used to train a specific base classifier based on the small
sMRI cubes in a specific position of the same training images, the AD clas-
sification performance of a specific base classifier was directly and highly
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Figure 9. Illustration of P-score calculation at different levels.

associated with the discriminative capability of the specific brain region
(i.e., the specific position). Thus, the difference in the AD classification ca-
pability among the different base classifiers mainly resulted from the dif-
ference in the brain regions (positions) corresponding to these base clas-
sifiers. Hence, given an sMRI image of an AD patient as an input, there was
no reason to doubt that the brain region corresponding to a base classifier
with a higher AD predictive score as the output was much more likely to be
neurodegenerative. Meanwhile, the brain region corresponding to a base
classifier with a heavier weight allocated by the meta-classifier was more
important in determining the label of an sMRI image. In this way, the En-
semble 3DCNN was relatively simple in the model structure and had good
interpretability.

On the one hand, the advocated Ensemble 3DCNN integrated the recog-
nition ability of multiple base classifiers, exhibiting satisfactory perfor-
mance in AD identification. On the other hand, the Ensemble 3DCNN facil-
itated intuitively differentiating among the brain regions with varied neu-
rodegenerative risks and locating the high-risk neurodegenerative brain
regions. Both were the advantages of the proposed Ensemble 3DCNN.

DL-Extracted Neuroimaging Biomarker P-Score: In this study, a neu-
roimaging biomarker, named P-score, was derived to assess the degree
of neurodegeneration in the brain of AD subjects. P-score is a multi-level
measurement that can evaluate the neurodegeneration at the four levels
(i.e., cube, voxel, region, and whole-brain level). A higher P-score value
represents a higher degree of neurodegeneration. In Figure 9, the rela-
tionship among P-scores at the four levels is exhibited. Specifically, each
sMRI image was divided into 150 non-overlapping small cubes. P-score
of each small cube (P-scorecube) is defined as the weighted AD predic-
tive score of its corresponding base classifier with the weights from the
meta-classifier. Here, the weights refer to the parameters of the first con-
volutional layer in the meta-classifier. For sMRI cubes whose correspond-
ing base classifiers were eliminated, their P-score values were set as 0 be-
cause they were less relative to AD. For the rest sMRI cubes, P-scorecube
was evenly distributed to the voxels covered by the cerebral issue. The val-
ues of P-score were set as 0 for the voxels without any cerebral tissue.

Based on the Brainnetome Atlas,[29] the human brain is parceled into 246
regions that reflect the whole-brain’s anatomical and functional connec-
tions. To calculate the value of P-score of each brain region (P-scoreregion),
the values of P-scorevoxel of all the voxels the region contains were first
summed up and then, the sum was further divided by the size of the brain
region (i.e., the number of the voxels it contains) to eliminate the effect
of differences in the size of regions on P-scoreregion. For the sake of con-
venience, P-scoreregion was finally scaled to the range of [0,1] using the
Min-Max normalization. Here, in the Min-Max normalization, the mini-
mum and maximum values were 1.157 × 10−5 and 0.1241, respectively.
They are the maximal/minimal P-scoreregion values (before normalization)
of all brain regions in all the 720 sMRI images used for subsequent filtering
with Criterion 3 and 2 and the pattern analysis of AD neurodegenerative
progression, shown in Table 2 and Figure 2. At last, the P-scoreregion of
all brain regions were summed up to obtain the whole-brain P-score to
evaluate the degree of neurodegeneration at the whole-brain level, that is,
P-scorewhole(i) = ∑kP-scoreregion(i, k). Here, i and k represented the in-
dex of an image and a brain region, respectively. P-scoreregion, the degree
of neurodegeneration at the region level, was employed for analyzing AD
progression from the standpoint of neuroimaging in this paper. By default,
the P-score means P-scoreregion in the experimental section. The details
on how to calculate P-score at the different levels and the correspond-
ing pseudo-codes are presented in the Supporting Information. Plus, in
the Supporting Information, the scatter diagram of P-scorewhole and AD
(softmax) predictive score obtained by Ensemble 3DCNN for 638 AD sMRI
images as shown in Table 2 and Figure 2 was plotted to exhibit the associ-
ation between P-score at whole-brain level and AD probability output from
Ensemble 3DCNN, that is, AD (softmax) predictive scores, to some degree.

Connectivity Analysis: For each sMRI image, the neurodegenerative
brain regions detected via P-score were encoded in a binary vector, whose
element values were equal to 1 if the corresponding brain regions were
marked as neurodegenerative and 0 otherwise. The neighborhood infor-
mation (adjacent regions) of brain regions was saved in a label set. DFS
algorithm[38] was employed to explore the connected components among
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the detected neurodegenerative brain regions for each AD sMRI image.
The pseudo-codes for connected component analysis are presented in the
Supporting Information.

Sequential Pattern Mining: As shown in Table 2, the 167 AD sub-
jects who satisfied the above-mentioned three criteria from the ADNI
database[27] were selected to form 167 longitudinal sMRI sequences for
AD progression analysis. The neurodegenerative brain regions were la-
beled via the detection of P-score. A standard sequential pattern mining al-
gorithm, namely SPADE,[39] was applied to explore the common neurode-
generative patterns in AD progression. The implementation steps such as
sequence preparation, pattern mining and post-screening, are detailed in
the Supporting Information.

Visualization of the Neurodegenerative Brain Regions: In this paper, a
brain region with a higher P-score value was considered as that with a
higher degree of neurodegeneration.

In Figure 3, with the Brainnetome Atlas,[29] brain regions were colored
from light to dark according to their increasing P-score value. In Figures 5–
7, the brain regions with P-score values higher than 𝜆 were selected as
neurodegenerative regions. Here, 𝜆 = 0.73, which had been defined in the
previous section. These neurodegenerative brain regions were then high-
lighted using different colors to display the neurodegenerative progression
of AD in the brain in terms of sMRI.

Statistical Analysis:

1) Pre-processing of data: sMRI images involved in this study were first
pre-processed using the Computational Anatomy Toolbox (CAT12,
dbm.neuro.uni-jena.de/cat/) with default setting for skull extraction,
MNI space registration, and image smoothing. Each pre-processed
image was then normalized to a 121 × 145 × 121 image with values
ranging from 0 to 1. The spatial resolution was 1.5 × 1.5 × 1.5 mm3 per
voxel. Since 121 and 145 were not integral multiples of 25, each image
with the size of 121 × 145 × 121 was reformatted to 125 × 150 × 125
using edge padding and zero filling for model training, performance
test, and degeneration pattern analysis.

2) Data information: 2369 T1-weighted structural MRI images of 1005
participants from ADNI and OASIS databases were involved in this
study. The demographic and health-related information of all the par-
ticipants is summarized in Table 1. This work performed six analysis
phases to explore the neurodegenerative patterns in AD, as shown in
Figure 1. A data selection flowchart is illustrated in Figure 2 to clarify
the datasets used in each phase. More detailed information of sMRI
images involved in the six pattern analysis phases can be found in Ta-
ble 2.

3) Statistical methods for significance assessment: Two-sided testing was ap-
plied to assess the AD identification ability of the proposed Ensemble
3DCNN model and the radiomic features[34] extracted by the Surfer
Software Suite (https://www.freesurfer.net/). The resultant P-value of
each classification experiment is presented together with the AUC in
the legend of each sub-figure in Figure 4.

4) Software used for statistical analysis: Ensemble 3DCNN was imple-
mented by TensorFlow 2.6.0 with NVIDIA GeForce RTX3090. DFS
algorithm[38] was employed for spatial/temporal-spatial connectivity
analysis of neurodegenerative brain regions among AD subjects. The
common neurodegenerative patterns in AD progression were mined
based on SPADE,[39] which is a standard sequential pattern mining
algorithm.
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